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It is shown that the pressure and velocity fluctuations of the unsteady motion on a 
transversely sheared mean flow can be expressed entirely in terms of the derivatives 
of two potential functions. One of these is a convected quantity (i.e. it is frozen in the 
flow) that can be specified as a boundary condition and is related to a transverse 
component of the upstream velocity field. The other can be determined by solving an 
inhomogeneous wave equation whose source term is also a convected quantity that 
can be specified as a boundary condition in any given problem. The latter is related 
to the curl of the upstream vorticity field. The results are used to obtain an explicit 
representation of the three-dimensional gust-like or hydrodynamic motion on a 
transversely sheared mean flow. It is thereby shown that this motion is ‘driven’ 
entirely by the two convected quantities alluded to above. 

The general theory is used to study the interaction of an unsteady flow with a 
semi-infinite plate embedded in a shear layer. The acoustic field produced by this 
interaction is calculated in the limits of low and high frequency. The results are 
compared with experimental one-third octave sound pressure level radiation patterns. 
The agreement is found to be excellent, especially in the low frequency range, where 
the mean-flow and convective effects are shown to have a strong influence on the 
directivity of the sound. 

1. Introduction 
The nature of the small amplitude unsteady motion imposed on a uniform (i.e. 

constant velocity) compressible flow is now well understood (Kov&sznay 1953). In  
such a flow the velocity field can be decomposed into the sum of (i) a disturbance 
(often called a gust) that is purely convected (i.e. is frozen in the flow), has zero 
divergence and is completely decoupled from the fluctuations in pressure or any other 
thermodynamic property and (ii) an irrotational disturbance that produces no 
entropy fluctuations but is directly related to the pressure fluctuations and is, as a 
result, connected with any acoustic or other ‘potential’ type motion that may occur. 
Each of these types of disturbance is itself a solution to the governing equations and 
can therefore be imposed on the flow independently of the other. 

Over the years, this decomposition has proved extremely useful for the formulation 
of problems that involve the interaction of small amplitude upstream distortions 
with airfoils and other aerodynamic surfaces. For example, the well-known Sears 
(1941) function describes the response of a two-dimensional airfoil to a two-dimensional 
convected gust for the case where the flow is incompressible. Since this result appeared 
many such response functions or in most cases their numerical equivalents have been 
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deduced. These extensions include compressibility effects and account for three- 
dimensional convected disturbances (see Goldstein 1976, pp. 136-139 for a summary). 

The response functions have been used to calculate the buffeting of an airfoil due 
to atmospheric turbulence (Liepmann 1952) and the radiated sound fields and un- 
steady aerodynamic loads caused by both steady and turbulent non-uniform flows 
interacting with propellers, helicopter rotors and aircraft engine fans and compressors. 

The Kovhsznay (1953) decomposition owes its great utility to two properties of 
the convected vortical solutions. First, such solutions can exist and remain finite 
everywhere in the flow even when there are no bounding surfaces present. They can 
therefore be used to represent an incident disturbance that would exist when the 
interacting surfaces were not present, i.e. a disturbance field that can be imposed on 
the flow independently of any boundary surfaces that may be present. Second, they 
provide a good representation of the actual non-uniform flows that are encountered 
in practice, including, as a result of Taylor’s hypothesis, flows with upstream 
turbulence. 

There are, however, many cases in which the mean flow cannot be treated as being 
uniform but rather contains substantial transverse velocity gradients. Such flows 
occur in the vicinity of the tail surfaces in conventional aircraft but are even more 
prominent in V/STOL aircraft, where the jet exhaust streams are deliberately made 
to interact with wings, flaps and other surfaces. Consequently, it is necessary to 
account for transverse velocity gradients when calculating the unsteady aerodynamic 
loads and resulting sound fields produced by the turbulence in such flows. 

In  a recent paper (hereafter referred to as I) Goldstein (1978) showed how the 
convected gust solutions for a uniform mean flow can be generalized to the case where 
the unsteady motion is imposed on a transversely sheared mean flow. This was done 
in a way that allows the generalized gust to represent unsteady incident disturbances 
on transversely sheared mean flows in the manner in which the Kovitsznay (1 953) 
solutions have been used to represent them on uniform flows. 

A transversely sheared flow is one in which the velocity has the same direction a t  
every point of the flow but can vary in magnitude along any line perpendicular to that 
direction. If such ,a flow is steady it will satisfy the inviscid non-heat-conducting 
equations of motion as long as we require that (i) the pressure be everywhere constant 
and that (ii) the density remains constant on the surfaces of constant velocity. It is 
therefore reasonable to study inviscid small amplitude unsteady perturbations of these 
flows. 

Unfortunately the development in I is rather intricate and specific formulae are 
given only for the case of two-dimensional motion on a special class of parallel shear 
flows which are themselves a special case of the transversely sheared flows. Part of 
the purpose of the present paper is to generalize the results of I and to do so by a 
procedure that is much less complicated and considerably more straightforward. The 
new approach also provides some additional insight into the nature ofthe gust solutions 
on transversely sheared mean flows.. More important, however, is the fact that the 
final formulae given in this paper are sbmewhat simpler than those given in I. 

Another purpose of this paper is to extend the leading-edge scattering problem 
that was worked out in I for two-dimensional low frequency disturbances on a sym- 
metric shear layer to three-dimensional disturbances on arbitrary shear layers. 

The solutions are used to calculate the sound field that results from the scattering 
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of a gust by the edge of a plate. The formulae for the directivity patterns in the plane 
perpendicular to the plate, which reduce to the Ffowcs Williams & Hall (1970) 
formula in the limit of zero Mach number, constitute a generalization of that result 
which accounts for the effects of the surrounding mean flow field (fluid shielding, 
refraction, etc.). It is now recognized that such effects must be incorporated into 
Lighthill’s (1 952) theory to obtain accurate predictions of jet-noise directivity 
patterns for individual frequency bands and it turns out that this is also the case 
for edge noise, though the mean-flow effects are admittedly less severe here. It is 
shown that the results accurately predict the experimental third octave directivity 
patterns produced by a long flat plate in the mixing layer of a subsonic jet. 

In  STOL-aircraft applications, it is usually the trailing edge that is exposed to the 
intense turbulence. We therefore also calculate the sound field due to the scattering 
of a gust by a trailing edge. Since there is a mean flow in the vicinity of the plate, 
there is no difficulty in imposing a Kutta condition at the edge. The limit of zero 
Mach number is, of course, the same in this case as it is for a leading edge. But the 
mean-flow interaction effects are considerably different in these two cases. Thus in 
the low frequency limit the pressure-field radiation pattern (in the plane perpen- 
dicular to the plate) is given by the Ffowcs Williams & Hall (1970) result multiplied 
by two inverse Doppler factors for a leading edge and by only one inverse Doppler 
factor for a trailing edge. In  both cases one Doppler factor is due to the convective 
motion of the gust relative to the stationary fluid at infinity, an effect that will occur 
even in the zero-mean-flow theories when the motion of the incident disturbance is 
properly accounted for. The additional Doppler factor in the leading-edge formula 
is due to mean-flow interaction effects. This is reminiscent of the remarkable low 
frequency lifting of the directivity pattern that is now well established for pure jet 
mixing noise (Goldstein 1975; Dowling, Ffowcs Williams & Goldstein 1978; Mani 
1976). It is a rather surprising result of the present analysis that the low frequency 
lifting does not occur for a trailing edge. 

In the high frequency limit the leading-edge directivity pattern (in the plane per- 
pendicular to the plate) is very close to the Ffowcs Williams & Hall (1970) result, 
especially a t  points outside the zone of silence. Thus, as one might expect, the mean 
flow ‘shields’ the gust from the stationary fluid a t  infinity and thereby eliminates the 
convective amplification due to the relative motion of the incident disturbance and 
this stationary fluid. 

On the other hand the mean flow alters the trailing-edge radiation pattern in a very 
unexpected way. Thus, when the Mach number is sufficiently high, it causes this 
pattern to be nearly the same as that due to a semi-infinite plate in the absence of a 
mean flow but with the plate extending to infinity in the downstream direction rather 
than in the upstream direction, i.e. it causes the leading and trailing edges to have the 
same directivity patterns when measured relative to the flow direction (rather than 
relative to the plate configuration as would be the case in the absence of a mean flow). 

Finally it is shown how the gust solution can be used to explain qualitatively 
certain puzzling aspects of the behaviour of free shear flow turbulent convection 
velocities. 

Rather than using the generalized-function approach of I we construct the gust 
solution in this paper by using the remarkable fact that the velocity and pressure 
fluctuations can be expressed in terms of two potentials, one of which is a purely 

21-2 



604 M .  E .  Goldstein 

convected but otherwise arbitrary quantity that can be specified as a boundary con- 
dition and the other of which satisfies an inhomogeneous wave equation whose source 
term is a convected quantity which can also be specified as a boundary condition. 
This representation is deduced in 8 2.1. 

In  8 2.2 we derive a formal solution to the wave equation that, remains finite at all 
points of space. The flow field corresponds to the one that would exist if there are no 
‘scattering ’ surfaces or sources within the flow. It is then shown (in 8 2.3) that the 
resulting expressions for the velocity and pressure fields closely resemble those of the 
gust solutions constructed in I and that they are in fact identical to them in the limiting 
case of two-dimensional motion treated in that paper. Consequently the solution 
constructed here is a generalization ofthe gust solution constructed in I. 

Since the motion is now three-dimensional, the gust solution involves two arbitrary 
convected quantities rather than the single quantity that enters the solution in I. 
In fact, it can be shown that the most general ‘everywhere finite’ vortical convected 
solution on a uniform flow can also be expressed in terms of precisely two arbitrary 
convected quantities. But unlike that case’the velocity component in the direction of 
the mean velocity gradient now undergoes an algebraic decay a t  upstream infinity. 
The pressure fluctuations also undergo such a decay. 

On the other hand the longitudinal velocity and remaining transverse velocity 
components need not decay at  upstream infinity (as they would if the motion were two- 
dimensional) but rather behave like convected disturbances in this region. These two 
velocity components also differ from the pressure fluctuation and gradientwise velocity 
component in that they are ‘driven’ by both of the arbitrary convected quantities 
that enter the governing equations while the pressure and corresponding transverse 
velocity fluctuations are ‘driven’ by only one of these convected quantities. The 
latter convected quantity is shown to be equal to  one of the components of the curl 
of the vorticity fluctuation far upstream in the flow. The other convected quantity 
is determined by the upstream value of either (but not both) ofthe fluctuating velocity 
components that it affects. 

It is especially important that the gust solution is defined at  all points of space and 
corresponds to the flow that would exist without any ‘scattering’ at  other interacting 
surfaces in the flow. Thus it is normally possible to  formulate a ‘scattering’ or dis- 
tortion problem by assuming that the incident disturbance is specified far upstream 
in the flow where the ‘scattered’ solution has decayed. But in the present case the 
incident disturbance field must be represented by the gust solution whose transverse 
velocity component in the direction of the mean-flow velocity gradient will itself 
decay far upstream in the flow (in fact, when the motion is two-dimensional, the 
entire gust velocity field will decay in this region). We cannot therefore suppose that 
this velocity component is specified a t  upstream infinityt (i.e. a t  best we can in- 
completely specify the upstream velocity field). However, we can also formulate a 
‘ scattering’ problem that involves only experimentally observable inputs and outputs 
by requiring that the incident disturbance field be that which would be measured 

t One of the referees has pointed out that this phenomenon is related to the algebraic growth 
in the downwind direction that certain modes of the unsteady motions are known to undergo. 
Naturally any mode that grows algebraically with axial distance cannot be defined at upstream 
infinity. This curious behaviour was examined to some extent by Durbin (1979) and Moffatt 
(1965). 
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FIGURE 1. Cylindrical co-ordinate surfaces for transversely sheared flow. 

with the scattering surfaces removed from the flow under consideration. We can then 
suppose that these surfaces are inserted into the flow and the combined ‘scattered’ 
and incident disturbance field is measured. This formulation will frequently corres- 
pond to the type of question we are most likely to ask in practice. The solution to the 
problem posed above is given by the gust solution plus the outgoing-wave solution 
that must be added to make the sum satisfy the boundary conditions on the scattering 
surfaces. 

In  8 3 we work out the solutions to the various scattering problems described above 
and show that the acoustic field is completely determined by a single component of 
the curl of the fluctuating vorticity far upstream in the flow while in the plane 
perpendicular to the plate it is determined by a single component of the upstream 
vorticity vector. 

Finally the low and high frequency asymptotic expansions of the acoustic solution 
are compared with experimental data in 5 3.5. 

2. The gust solution on a transversely sheared mean flow 
One of the simplest solutions to the inviscid non-heat-conducting equations of 

motion is provided by a unidirectional transversely sheared mean flow wherein the 
velocity v, the density p and the pressure p are given by 

v = C,B(y(y , z ) ) ,  p = po = constant, p = constant (2.1) 

respectively, where ( x , y , z )  are Cartesian co-ordinates, C, is a unit vector in the x 
direction and the transverse co-ordinate y (y , z )  is an arbitrary function of the rect- 
angular co-ordinates ( y ,  x )  in the cross-flow direction. The surfaces on which 7, and 
as a consequence the velocity V, remain constant can be thought of as co-ordinate 
surfaces in a cylindrical co-ordinate system such as the one depicted in figure 1.  
Changes in a occur only in the direction Vy normal to these surfaces. Thus when 

y = r = (y2+22)6 ( 2 . 2 )  

the co-ordinate surfaces become circular cylinders and, as a result, 7 = r becomes the 
radial co-ordinate in a standard cylindrical co-ordinate system with polar axis in the 
x direction. In this case the velocity profiles are purely radial. On the other hand, when 

7 = Y  (2.3) 

the co-ordinate surfaces become parallel planes and the corresponding flow a parallel 
shear flow. 
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Over the years a wide range of inviscid fluid phenomena has been analysed by 
treating the unsteady motion as a small perturbation about some type of transversely 
sheared mean flow. Perhaps the most prominent of these have been in the area of 
hydrodynamic stability, where much of the literature is concerned with parallel 
sheared mean flows. However, there are also many analyses concerned with duct 
acoustics and jet noise that treat axially symmetric mean flows. 

The inviscid linearized momentum and continuity equations governing the velocity 
and pressure perturbations on a transversely sheared mean flow, which we denote by 
u and p respectively, can be written as 

and 

po ($+el; v) = - v p  (2.4) 

where co is the (constant) speed of sound of the mean flow, the prime denotes differentia- 
tion with respect to 7, t denotes the time, 

D/Dt = a/at + B(7) a/ax (2.6) 

9 = l/IV7l (2.7) 

v = u.C, (2.8) 

is the mean-flow convective derivative, 

and, since C, = gVy is the unit normal to the co-ordinate surfaces y = constant, 

is the perturbation velocity component in the direction perpendicular to these surfaces. 
It is worth noting that the geometric weighting factor g is equal to unity in both 
the transverse co-ordinate systems discussed above. 

2. I. Introduction of potentials 

It can be seen by inspection that the linearized momentum equation (2.4) will be 
identically satisfied for any function $ of X, y, z and t and any function 

if we put 
e = e (x / i%l ) - t ,  y,4 

(2.9) 

and P i p o  = - ~ 3 ~ t 3 ,  (2.10) 

where 8,. = x e2 is the unit vector that forms a right-handed system with el and 
6, as indicated in figure I .  This is rather easy to do for the parallel shear flow (2.3) 
and the reader who is interested in only this type of flow can set g = 1 and 7 = y, 
recognize that Cl, e2 and C, are the usual fixed unit vectors f ,  j and k in the x, y and z 
Cartesian co-ordinate directions and use the relation 

v = P a/ax + j a/ay + L a p  
together with the fact that 

DB/Dt = 0. (2.11) 
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But the reader who is interested in the general case must first introduce the family 
[(x,y) = constant of co-ordinate surfaces that are perpendicular to both the 
7 = constant and the x = constant co-ordinate surfaces, recognize that 7 and 6 can 
be used as new independent variables in place of y and z, and then use the relations 

(2.13) 

where a/ay,  of course, denotes the partial derivative with respect to 7 with x and 6 
held fixed and similarly for a/a[ .  Naturally (2.1 I )  must also be used in this case. 

Since the function @ is at  this stage quite arbitrary it can be adjusted to ensure 
that the continuity equation (2.5) is also satisfied. Thus, substituting (2.9) and (2.10) 
into (2.5), we obtain after some manipulation (the reader who is interested in the 
general case must also use the usual formulae for the Laplacian and divergence in 
orthogonal curvilinear co-ordinates) 

D 1 0 2  2 a 2  0% 
- Dt [(- cg --) Dt2 g- (7 @)] = 0 

[where g = h = 1 and 7 = y for the parallel shear flow (2.3)]. Notice that this equation 
does not involve the arbitrary function 8. It can be integrated immediately to obtain 

where w, can be any function of its arguments.t 
The factor -g /B ' ,  which has been inserted to simplify the subsequent equations, 

is equal to the reciprocal of the mean-flow vorticity. Then, since the left side of (2.14) 
is dimensionless, we must have the dimensions of vorticity. 

2.2, Construction of gust solution 

We can in principle find a solution to the four scalar equations (2.4) and (2.5) that 
satisfies any appropriate boundary conditions by simply solving the wave equation 
(2.14) and substituting the result into (2.9) and (2.10). In fact, for any given set of 
boundary conditions, we can find at  least one such solution for each choice of the 
arbitrary convected quantities 8 and we. In  flows that persist for all time and extend 
infinitely far upstream these quantities are completely determined by the imposed 
upstream conditions. These statements become obvious when it is recognized that 
every solution to (2.4) can be expressed as the sum of (i) a particular solution that is 
defined and finite a t  all points of space and (ii) a homogeneous solution that satisfies a 
radiation condition at infinity$ and causes the sum to satisfy the appropriate boundary 
conditions on any bounding surfaces that exist in the flow. 

The part of the velocity and pressure fields generated by the particular solution 
and the term in (2.9) involving 8 is defined over all space and represents (since our 

t Flows with constant mean shear have very special properties. Mohring (1976) obtained a 
second order inhomogeneous wave equation for the axial velocity perturbation on this type of 
flow. However, his result cannot be generalized t,o more general shear flows and does not 
appear to be related to the one obtained here. 

$ For incompressible flow this cam be replaced by a boundedness condition. 
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interest here is in 'external ' flows that'extend to infinity in all directions) the unsteady 
flow that would exist in the absence of any interacting boundary surfaces, i.e. it  
represents the part of the flow due to the imposed upstream conditions. Actually it 
only partially represents this portion of the flow since the wave equation (2.14) 
possesses homogeneous solutions corresponding to incident acoustic waves. 

The part of the imposed upstream flow represented by the particular solution 
described above can be thought of as the hydrodynamic or non-acoustic part. We 
shall show subsequently that all the terms in this solution are proportional to one of 
the two arbitrary convected quantities B and wc, so that the solution is in a sense 
'driven ' by these quantities. 

Since our interest here is in motions that persist for all time (and not in the effects 
of initial transients or instabilities of the flow) we can without loss of generality 
restrict our attention to the case where the unsteady motion has harmonic time 
dependence. Then the convected quantities 0 and w, become functions of the form 

wc = Q ( Y ,  2 )  exp [ i w ( x / q 7 )  - t)l (2.15) 

e = 0(y, Z )  exp { io[z /B(7)  - t]} ,  (2.16) 

where SZ and 0 are arbitrary functions of the cross-flow co-ordinates. The potential 
function q5 can be written as 

4 = $(x, y,  Z )  e - iw t .  (2.17) 

Since the particular solution, which was described above, is defined over all space 
and since the coefficients of the wave equation (2.14) are independent of x, it is natural 
to attempt to construct this solution by taking the Fourier transform of (2.14) with 
respect to that variable. Then in view of (2.15)-(2.17), (2.14) becomes 

S k -= , (2.18) 
( 1  3 

where 
co 

~ ( k , l y ,  x )  = j' exp ( - ik, x) 7 (x, 9, z )  dx 2% - m  

is the Fourier transform of $ and the transverse Laplacian Vq is 

(2.19) 

(2.20) 

In the general case of an arbitrary transversely sheared mean flow we can easily 
express the desired particular solution to (2.14) in terms of the free-space Green's 
function of the two-dimensional reduced wave operator on the left side of (2.18). 
But there is little to be gained by such generality and we now restrict our attention to 
a mean flow for which (2.18) can be solved by separation of variables. It turns out 
that the only flows for which this can be done are those corresponding to (2.2) and 
(2.3). Since parallel sheared flow is the simplest of these and since it was the one 
treated in I we consider only this case. 
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Then since 6 = z and g = h = 1 the coefficients of (2.18) will depend only on 7 = y 
and we can suppose without loss of generality that 

(2.21) 

(2.22) 

where = ( w -  ok,)m. (2.24) 

Suppose that 8I-t 0 as y + & co. Then in these regions the left side of (2.23) will 
approach the usual reduced wave equation for a uniformly moving medium. Con- 
sequently, (2.23) will possess two homogeneous solutions one of which, say rV, 
satisfies a radiation condition a t  y = +a and the other of which, say FL, satisfies 
this condition a t  y = - 00. The particular solution of (2.23) that is finite a t  all points 
of space and satisfies radiation conditions a t  y = & co can therefore be written as 

(2.25) 

where for convenience we have suppressed the k, dependence of the various terms in 
this equation and 

W(k1, 7) = FL(klJ7) rti(k,,r) - rv(k, , r )  rL(k1, r )  (2.26) 

denotes the Wronskian of rV and rL. 
Since k, = w / a  is a singular point of (2.23) the individual factors in the integrand 

of (2.25) can become infinite a t  the point where the delta function becomes infinite, 
though they are grouped in a combination that will itself remain finite. In  order to 
avoid this inconvenient ratio of infinite terms we notice that taking the Fourier 
transform of (2.10) and they component of (2.4) yields 

r = - uk1)2, v = ~ ' / i ~ ~ ( ~  - oh,), (2.27), (2.28) 

where V and P are related to the transverse velocity and pressure fluctuations by 

P = - exp[-i(k1x+k3z)]~dx, (2.29) 

V = - f exp[-i(k,x+k,z)]Edx: 

2n Sm - m  

1 "  
277 

(2.30) 

and 

Then since 
, (2.31), (2.32) = jj e-iwt ,,,, = g e-iot. 

(2.33) 
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[where (Pu, Vu) and ( PL, VL) correspond to the solutions Gu and sL in the manner 
dictated by (2.9) and (2.10)] and since Pv, PL, V, and V, can all be expressed as linear 
combinations of the solutionst Pl, Pz, V, and V, whose behaviour is described. by 
(3.4) and (3.5) of I, it follows from (2.27) and (2.33) that (2.25) can be written as 

(2.34) 

where 

exists and is non-zero and Pv and PL remain finite at  k,  = w / u .  
The individual factors in the integrand of this equation are now well behaved and 

we can carry out the integration over the delta function. Thus inserting (2.34) into 
(2.24) and then inserting the result via (2.22) into the inverse of the transform (2.19), 
we obtain after integrating over the delta function 

(2.36) 

where the k3 dependence of the various terms in the integrand of this equation is still 
suppressed. 

2.3. Discussion of gust solution 

Inserting (2.36) into (2.17) and using the result in (2.9) and (2.10) (with y = 7, t; = z 
and y = h = l ) ,  we obtain expressions for the velocity and pressure fluctuations of 
the gust. For example v,, the y component of the gust velocity, becorpes 

(2.37) 

(2.38) 

- V ( @ / W ,  Y) ~ u ( @ / w h  7 ) / J ( 7 )  for 7 ’ Y) (2.39 4 
- u ( w / m # o ,  Y) P L ( 4 3 7 ) )  a)/J(r)  for 7 < Y. (2.39 b )  

%(Yl7) = { 
Similar expressions can be obtained for the other gust-solution variables p,, ug and tog. 
The only difference is that the V’s on the right side of (2.39) must be replaced 
by the appropriate reduced variables (P  in the case of pg ,  etc.) and the contribution of 
the convected components (i.0. the terms involving 13) must be included for ug and wg. 

These results closely resemble the formulae given in I. In fact it is shown in appendix 
A that (2.38) can be transformed into the corresponding transverse velocity com- 
ponent of equation (3.27) of I when the motion is two-dimensional (so that k, = 0)  

(Pl,V,) and (P2, V,) denote corresponding solution pairs of the system of ordinary differentia 
equations governing the velocity and pressure fluctuations. The former are regular and the latter 
irregular at the regular singular point of these equations, which occurs at 0 = w / k , .  
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and that the procedure can easily be extended to obtain the other components of this 
equation. (In fact, since the transformations of appendix A do not require that 
D( - m) = a( +a) or that the mean velocity profile has a single maximum or 
minimum, we have shown that equation (3.27) of I is actually more general than the 
assumptions used to derive it.) 

The representation of the gust used in this paper differs from that given in I only 
because different sets of linearly independent solutions of the ordinary differential 
equations (i.e. Pv and PL as opposed to PI and Po) are used in equation (2.38) of this 
paper and equation (3.27) of I. The interpretative remarks given in 9 3.3 of I therefore 
apply equally well to the results of the present paper but the new formulae are 
somewhat simpler than those given in I. Also, since they now arise as the particular 
solution of the inhomogeneous wave equation (2.14), the interpretation of the 
convected quantity 

w,(x /o(Y) - t ,Y , z )  = QZ(Yllc,)exP{i[o(x/~(Y)-t) + k3zI) (2.40) 

as a source that 'drives' the rest of the motion is now quite obvious. 
Of course, (2.9) shows that there are two convected quantities (0 as well as w,) 

that ' drive' the flow when the unsteady motion is three-dimensional. But 8 will have 
no effect on either the pressure fluctuations or the gradientwise velocity component 
while i t  drives the longitudinal and w components of the velocity in a very simple 
fashion. For example, it follows from (2.36) and (2.9) (with y = 7 and g = h = 1)  that 
the longitudinal gust velocity ug is given by 

= jj e- iwt ,  
B B  

ik, o'(y) B(yJk , )  exp [iwx/?7(y)] 

(2.41) 

and Nu is defined analogously to Yv. Thus the axial velocity consists of a portion that 
is convected downstream a t  the local mean flow velocity plus a portion that consists 
of a superposition of disturbances travelling a t  all convection speeds between the 
maximum and minimum mean-flow velocities. But, when a ( y )  is sharply peaked 
about some point yo in the flow, this second portion of ug and the entire transverse 
disturbance vg will both have convection velocities that remain nearly constant (i.e. 
independent of y )  and take on values close to the mean velocity a t  yo. This situation 
tends to occur in turbulent shear layers because the turbulent energy and consequently 
the turbulent vorticity of such flows are concentrated in a rather narrow region near 
the centre of the mixing layer where a'' z 0 and, as shown in 8 5 of I or by the remarks 
given below [see (2.45)], w, is therefore nearly equal to the vorticity in low speed flows. 

These results imply that the radial velocity correlations in the turbulent mixing 
layer of a round jet should have convection velocities that are more nearly constant 
across the mixing layer than the convection velocities of the longitudinal velocity 
correlations, the latter being more nearly equal to the local mean flow velocity. As 
can be seen from figure 2, the measurements taken by Wills (1964) in the mixing 
layer of a jet, two diameters downstream from the nozzle exit, show that this effect, 
though it is not strong, does indeed occur in practice. 
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FIGURE 2. Variation of convection velocity across shear layer two diameters downstream from 
nozzle exit. -, mean velocity; -0-, longitudinal component of convection velocity; -+I--, 
radial component of convection velocity. 

When the mean flow is uniform, all components of the gust velocity field are con- 
vected downstream at the mean flow speed, This is consistent with Taylor’s hypothesis, 
which states that the turbulence will be nearly ‘frozen’ in a reference frame that 
moves with the mean flow. This gust solution is the most general motion on a uniform 
flow that is consistent with this requirement and is therefore frequently used to 
represent the turbulence in such flows. 

Now there are two reasons why Taylor’s hypothesis will not hold in real turbulent 
shear flows. One of these is that the turbulent velocity fluctuations cannot be treated 
as inviscid linear disturbances of the mean flow. This difficulty is common to all 
turbulent flows, in certain of which the turbulence is very close to being frozen. This 
occurs because the nonlinear and viscous effects require fairly large streamwise 
distances to produce significant deviations from Taylor’s hypothesis in turbulent 
shear flows. 

The other reason for the invalidity of Taylor’s hypothesis is that the gust velocity 
field is no longer a purely convected quantity when the mean flow is non-uniform. As 
we have seen, the gusts in these flows contain components that travel at  all speeds 
between the maximum and minimum flow velocities. However, we can introduce a 
generalized Taylor’s hypothesis for shear flows by supposing that the turbulence can 
be represented by the gust solution deduced above (which, as we have seen, is a 
generalization of the uniform-flow gust solution). The convection properties of the 
turbulence will then be those implied by this representation rather than those of 
Taylor’s hypothesis. 

As we have indicated, this representation of the turbulence will not apply over 
streamwise distances that are long enough to allow viscous and nonlinear effects 
(including the effects of the slow divergence of the shear layer) to take place. But we 
can calculate the turbulence over distances that are small compared with the ratio 
of the mean to the turbulent velocity times the integral scale of the turbulence by 
linearizing the unsteady motion about its value a t  some fixed streamwise location 
(Hunt 1977). The gust solution will then represent the turbulence in this local sense. 

Now, unlike the case where the mean flow is uniform, the equations for a trans- 
versely sheared mean flow possess harmonic instability-wave solutions that grow 
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exponentially fast in the streamwise direction and these solutions have been used to 
explain certain features of real turbulent flows. But a t  any given frequency and 
transverse wavenumber (in the r,l direction), the class of unsteady motions that can be 
represented as a superposition of instability waves is much more restricted than that 
which can be represented by the most general gust solution. This is because there is 
only a relatively small number of instability waves (usually one) a t  any given frequency 
and rpdirection wavenumber while the gust is an arbitrary superposition of a non- 
denumerably infinite number of waves (i.e. it has a continuous spectrum). Thus the 
instability waves cannot by themselves represent the complete turbulence velocity 
field a t  any given streamwise location. The only question is whether or not they must 
be added to the gust solut,ion in order to obtain a complete local representation of the 
turbulence. In  this regard it can be argued that the instability waves model those 
features of the turbulence that are associated with the maintenance of the turbulent 
energy and are therefore related to the relatively slow growth of the turbulent eddies 
as they are convected downstream. Since such processes take place over axial dis- 
tances that are much larger than the length over which the local linearization re- 
presentation is valid, it is quite possible that the instability waves will play no role in 
this representation and can therefore be excluded by requiring that the solution 
should remain finite a t  all points of space. 

The particle displacement h in the direction transverse to the surfaces of constant 
mean velocity (see figure 1) is defined in terms of the velocity v in that direction by 
v = Dh/Dt. But it follows from (2.13) and the component of (2.9) that this quantity 
differs from the quantity h defined in (B1) by only an arbitrary additive convected 
quantity. We can make the definition of the particle displacement unique by setting 
this quantity to zero. Then (B 2) and (B 3) show that the two convected quantities 
we and 0 that 'drive ' the gust solution are linearly related to the 5 and x components 
of the vorticity (us and w, respectively), the pressure fluctuations and the particle 
displacement in the manner indicated by (B 2).  In  the absence of the gust solution the 
right side of (B 2) must vanish and in the general case, since it is easy to see that the 
left side of this equation is itself a convected quantity, the convective derivative 
DIDt of the right side must vanish. 

For a parallel shear flow (where y = 7,  5 = z and g = h == 1) y is zero and (B 2) 
becomes 

(2.44) 

Thus in this case we can express the convected quantity we directly in terms of the 
somewhat more physical quantities that appear on the right of the equation. In  fact, 
since the procedure near the end of 9 3.2 of I can be used to show that h and p (as 
well as all the terms in (2.9) that involve 4) will always decay algebraically as z + - 00, 

it follows that 
a@, awz a#, z+(z-z) as x+-m. 

Consequently (2.15) implies that 

(2.45) 
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FIGURE 3. Geometry for leading-edge scattering problem. 

when the motion has harmonic time dependence. Then the amplitude n in (2.40) is 
related to  the upstream vorticity by 

i7 exp [io(t - x / B ) ]  aos am, 
f i (y l l~,)  = $ow-, lim 27r (z-z) exp( -ik,z)dz. (2.46) 

When the motion has arbitrary time dependence 
bv 

is related to the upstream vorticity 

x (z-z) a@, aw, dzdt. (2.47) 

It therefore follows from (2.10), (2.36) and (2.38) that  the potential q5 as well as the 
pressure p and the y component of the velocity v are completely determined by the upstream 
distribution of the quantity 8,. V x o, i .e.  the y component of the curl of the vorticity vector. 

On the other hand, the longitudinal and z components of the velocity, u and w,  
respectively, depend on 0 as well as on q5 and are therefore only incompletely 
determined by the upstream value of 8,. V x w. But since all terms of (2.9) thatinvolve 
4 must decay as x -+ - co, it follows that 

as x+-m. 

so that ug and wg behave like convected disturbances at upstream infinity and the speci$ca- 
tion of one (but not both) of these disturbances alon3 with the y component of V x o will 
uniquely determine the gust solution at all points of the$ow. 
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FIUURE 4. Geometry for trailing-edge scattering problem. 

Equation (2.44) is a generalization of a result obtained by Mohring (1976) and 
Durbin (1979) for a flow with constant mean shear (i.e. with 0" = 0) .  When the motion 
is two-dimensional w, is zero and (2.44) reduces to 0, = w, + 8 ' (p /poc i )  - u H h ,  which, 
except for differences in notation, is the same as equation (5.3) of I. Then, as in I, 
w, -+ w, as x -+ - 00 and 8 = 0 a t  all points of the flow. I n  this case w, represents the 
unsteady upstream vorticity and the source term on the right side of (2.14) is the ratio 
of this unsteady vorticity to the vorticity of the mean flow. 

3. Interaction of a gust with a half-plane 
In  I we calculated the acoustic field that is produced when a two-dimensional 

symmetric gust on a symmetric shear layer interacts with a semi-infinite plate that 
extends infinitely far downstream. Explicit formulae were given only for the limiting 
case where the gust wavelength was large compared with the transverse dimensions of 
the shear layer. I n  this section we shall generalize that solution in a number of ways. 
We first consider, as we did in I, the scattering of a harmonic gust by a semi-infinite 
plate that extends to  downstream infinity in a two-dimensional shear layer (see 
figure 3). But we now allow the gust to  be an arbitrary (in general asymmetric) three- 
dimensional disturbance and let the mean velocity distribution be an arbitrary 
function of y. Moreover we now obtain explicit formulae for the case where the wave- 
length of the gust is small compared with the transverse dimensions of the shear 
layer as well as for the case where i t  is large. Finally, i t  is shown how this ' leading-edge ' 
solution can be modified so that it applies to the trailing-edge scattering problem 
depicted in figure 4. 

For both of these configurations the solution to the problem is equal to the sum of 
the gust solution whose transverse velocity field is given by (2.38) and a 'scattered' 
part, say { p a e - i w t  ? a  u e- iwt  ? a  3 e- iwt  ? a  w e- iwt  }, which has outgoing-wave behaviour a t  
infinity (i.e. it satisfies a radiation condition) and has an upwash velocity component 
(i.e. a y-velocity component) a t  the surface of the plate that  is equal and opposite to 
the upwash (i.e. gradientwise) component ;Zige-iwt of the gust solution (2.38). 

Since the flow extends to infinity in all directions, the pressure and upwash amplitude 
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of the 'scattered' solution can be expressed in terms of the outgoing-wave solutions 
P,, V,, PL and VL introduced in the previous section by 

( 3 . 1 ~ )  

m - 
v, = exp(ik34 1 e x P ( ~ ~ l ~ ) A v ( ~ l l ~ 3 ) ~ 7 , ~ l , Y l ~ 3 ) d ~ l ,  ( 3 . l b )  

where (+ = U, L for y 2 0. Since the continuity of Eg across the plane y = 0 implies 
that V, must also exhibit this continuity (if the imposed upwash velocity is to be 
continuous across the portion of this plane not occupied by the plate and zero on the 
plate surface) the expansion coefficients A, and A, must be related by 

- -m 

Au(kiIk3)Vu(ku O I h )  = A~(ki lk , )V~(ki ,  O J M .  (3.2) 

As is usual in problems of this type, we suppose that o has a small positive imaginary 
part that will be put equal to zero at the end of the analysis. 

3.1. The leading-edge scattering problem 

We first consider the case where the plate extends to infinity in the downstream 
direction. Then the configuration is the one illustrated in figure 3 .  The boundary 
conditions on the plane y = 0 are 

EJx, 0, z )  = -V,(z, 0 , z )  for x > 0, -a < z < 00, 

~,(z ,O+,z)=1),(x ,O-- ,z)  for x < O ,  - - c o < z < o o ,  

where 0 & denote the limiting values as y approaches zero from above/below. 

by solving the following dual integral equations: 
Inserting (3 .1 )  and (3.2) into theserelations, we find that A,(k,lk,) can be calculated 

m 

- 5,exp ( - i k 3 z )  = 1 exp ( i k , x )  A,(k,) Vu(kl, 0 )  dk,  for x > 0, 
- m  

where, as before, we have dropped the k3 dependence from the notation and Vijp is 
given by (2 .38) .  

These equations can be solved for Au(kl) by the Wiener-Hopf technique and the 
result can be substituted into (3.113) to obtain an expression for the scattered portion 
of the pressure field. Since the procedure is nearly identical to the one used in 5 6.1 
of I we give only the final result, which can be written as 

P&,Ylk,) = exp(ik3z)Jm - m  K(rlk3).Xv(Olr,k3)R(x,y(r,k3)dr, (3 .3)  

where .X, is defined by (2 .39) ,  
at upstream infinity by (2 .47) ,  

is related to they component of thecurlof thevorticity 

u = U , L  for y 2  0, (3 .4)  
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FIGURE 5.  Branch cuts for square root in complex k, plane. 

and K*(kl,k3) denote non-zero analytic functions in the upper/lower half of the 
complex k, plane with algebraic behaviour at infinity. These functions are uniquely 
determined (to within an irrelevant multiplicative constant) by their behaviour along 
the real axis, which is given by 

(3.5) 

The amplitude of the ‘scattered’ pressure field pa(x ,  y ,  z )  e-i*t due to a harmonic 
gust with a distribution of transverse wavenumbers k3 can now be calculated simply 
by integrating (3.3) with respect to k, to obtain 

@a(X,Y,z) = S_ S_:mexP (’%z) a(7lk3)  .X, (o lr ,k3)R(5 ,YIT,k3)dTdk3.  (3.6) 

Since p g  is continuous across the plate, this result can be used to calculate the jump 
in pressure across the plate and consequently the net fluctuating force acting on any 
given length of the plate (i.e. the response function for that length of plate). We can 
also use it to calculate the acoustic pressure radiated by the plate, since pg decays 
exponentially fast as y + w  whenever the magnitude of the difference between the 
maximum Mach number in the shear layer and the Mach number at w is less than 
unity (see p. 315 of I). 

The pressure jump across the plate is calculated in appendix C. We shall discuss 
the calculation of the acoustic pressure fluctuations only for the case where the 
observation point is above the plate we shall suppose that D ( y )  -+ 0 as y -+ 00. Then 

Pr, N Co(k, I k3) e-YY as y -+ + 00, (3.7) 

where Co(kl I k3) is a constant, 
y = [IC; - (w/co)2 + Ic;p 

and the branch cut for the square root is the one indicated in figure 5. 
Inserting this into (3.4), introducing the polar co-ordinates 

x = RsinOcos$, y = RsinOsin$, z = Rcos6 (3.9) 

depicted in figure 6 and using the method of stationary phase in the usual way to 
obtain the asymptotic expansions as R + w of the contour integrals with respect to 
k, and k3 in (3.4) and (3.6) respectively, we obtain 

sin 6’ sin $ m 

exp (ik, R) [ a ( r ( k ,  cos 6’) .X, (017, ko cos 6) R pa@, 8, $1 - 
J-00 
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where 

we have put 

and the angle Oo depicted in figure 6 is defined by 

M ( 7 )  = m / ) ) / C O ,  k, = w/co (3.12), (3.13) 

case, =_ sinocOs4. (3.14) 

Equations (2.47) and (3.10) show that the radiated sound produced by the gust 
depends only on the y component of the curl of its vorticity field far upstream of the 
leading edge of the plate. No other property of the gust can afect the soundJield or for 
that matter the pressureJEuctuations at any point of theJEow. 

I n  the plane perpendicular to the plate where 0 = &r the acoustic field will depend 
only on Q(yl0). But since the second term on the right side of (2.47) will integrate to 
zero (provided that w, is sufficiently localized) when k, = 0, @ q l O )  and consequently 
the acoustic field itself will depend only on the upstream values of the z component 
of the incident vorticity field (as it does when the motion is two-dimensional). More- 
over only the solutions of the ordinary differential equations for two-dimensional 
motion will enter the calculation of X, and T. Finally it is worth noting that only a 
single transverse wavenumber component of the upstream vorticity curl can affect 
the sound field a t  any given value of 8. 

3.2. The trailing-edge scattering problem 

Now suppose that the plate extends to upstream infinity as shown in figure 4. The 
gust solution is the same as before but the boundary conditions for the ‘scattered’ 
solution now become 

and 
p,(x,O+,z) = p,(x,O-,z) for x > 0, -03 < z < 03. 

We suppose that the mean flow e(0) is non-zero and continuous a t  y = 0, i.e. a t  the 
surface of the plate, though we can assume it to be as small as we like, and require that 
a Kutta condition be satisfied at the trailing edge. 

V,(x, 0, z )  = - V,(x, 0, z )  for x < 0, -03 < z < 03, 
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The problem now amounts to solving the dual integral equations 

619 

W 

- ;ii, exp ( - ik, z )  = 1 exp (ik, x) ~ , ( k , )  vU(k1, 0) dk, for x < 0. 

The procedure is nearly the same as before and we therefore give only the final results. 
The pressure jump across the plate is given in appendix C .  The acoustic pressure 
fluctuations are still given by (3.10) but with T now given by 

- m  

(3.15) 
- - - M ( r )  ~ , ( k 0 C 0 S 8 , ~ k , C 0 S 8 )  K-(koCOS801kOCOSO) 
- 

[ I  - M ( r )  COS8,] K - ( k o / M ( ~ ) ( k , C O S ~ ) V ~ ( k , C O S 8 , ,  O l k o C O S 8 )  

rather than by (3.11). 
In  order to make these formulae explicit we must know the solutions to the ordinary 

differential equations governing the reduced variables P and V .  These solutions must 
in most cases be determined numerically. But explicit simple asymptotic formulae 
can be obtained when the wavelength is either very large or very small compared with 
some characteristic dimensions S of the shear layer. 

3.3. Low frequency solution 

We first consider the low frequency limit, where k,  S < 1 .  I n  addition to requiring that 
D(y) + 0 as y + + 03, we also suppose for simplicity that u(y) -+ 0 as y+ - 03. The 
solutions can be found by using the method of matched asymptotic expansions as was 
done for the two-dimensional case in 3 6.3 of I. The procedure is almost identical and 
we again give only the final results. Thus when y = O(S) 

Pcr(k1, Y l k j )  = Co(kilk3) + O ( k o S ) ,  

V u ( h  Ylk3) = iCo(ki I k3) (ki + k: - k;)a [k, - k, M(y)] + O(k,  6 )  

(3.16) 

(3.17) 

(3.18) 

where C,(k,lk3) is the constant defined by (3.7). 
Inserting these results into (3.5), we find by inspection that 

K+(k,(k,) = [ki+ (k;-ki)*l-a, (3.19) 

and using this together with (3.16) and (3.17) in (3.10), (3.11) and (3.15), we find upon 
combining results that  

(3.20a) 

17, (cos &$) exp (ik, R) 
- w -  

d7 
X M ( 7 )  ~ ~ ~ ~ ~ , c o ~ ~ ) . x v ( o ~ %  h,cos@ 

1 - M ( ~ )  cos e, 
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for a leading edge and 

27, (sin *$) exp ( ikoR)  /:a [ - 2 M ( r )  sin 81 4 - - -  
Po co R 1 - M ( 7 )  sin 8 

X M(7) ~ ( r I k o c o s B ) ~ ( O J r , k o c o s 8 )  d r  (3.20 b )  

Inserting (3.16) and (3.17) into (2.35) and (2.39), we find that X,(Olr,kocosB) is 

%(Ol 7, ko cos8) = iko(sgn7) [ M ( r )  -WO)Il2M’(r)  J f ( r ) *  (3.21) 

These results clearly show that the acoustic pressure field is the superposition of the 
elementary acoustic fields produced by the upstream vorticity a ( y l k o  cos 8) residing 
at  each level y above/below the plate. 

We have already indicated that the vorticity distribution tends to be sharply 
peaked in shear layers. When this occurs the terms multipying a in the integrands 
of the above equations can be replaced by their values at the height yc where a is 
maximum. Then in the plane perpendicular to the plate where 8 = *n and 8, = $, 
the directivity patterns of the mean-square acoustic pressures will be given by 

[ I -  M(O)/M(r)l[l - “7) cos 801 
for  a trailing edge. 

actually independent of 8 and is given by 

and 

cos2 *$ 
[ 1 - M ( 0 )  cos $12 [ 1 - M(yc)  cos $12 

for a leading edge 

sin2 
for a trailing edge. 

[ I -  M(Yc)  cos $I2 

(3.22) 

(3.23) 

When M = 0 these results both reduce to the cos2&# directivity pattern found by 
Ffowcs Williams & Hall (1970) for the scattering by an edge in the absence of a mean 
flow. The trailing-edge formula reduces to sin2 = cos2 &(m- $) because the angle $ 
is measured relative to a line extending downstream from the plate in this case (since 
the polar co-ordinates are always oriented relative to the mean flow direction) rather 
than being measured relative to the plate itself as it is in both the Ffowcs Williams 
& Hall result and the leading edge directivity formula given above. 

Thus in the low frequency limit the shear layer alters the directivity pattern by 
four inverse powers of the Doppler factor for a leading edge and by two inverse powers 
for a trailing edge. In both cases two of the inverse Doppler factors are due to the 
convective motion of the incident gust relative to the stationary fluid a t  infinity. 
The additional two inverse Doppler factors that appear in the leading-edge formula 
are due to a mean-flow interaction effect. This low frequency ‘lifting’ of the directivity 
pattern by the mean flow is already well established for pure jet mixing noise (Gold- 
stein 1975, 1976; Dowling et al. 1978; Mani 1976). The remarkable fact is that this 
effect does not occur for a trailing edge. 

3.4. High frequency solution 

We now consider the high frequency limit, where ko 6 9 1. In this case the solution 
can be found by the WKBJ method (Morse & Feshbach 1953, pp. 1092-1105). 

It follows from (2.23) and (2.27) that the homogeneous solutions Pv and PL must 
satisfy 

DZ(P‘/D2)‘+~8(02-K21-K~) P = 0, (3.24) 
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where we have put 
D = 1 - k ,M(y ) ,  (3.25) 

L, = kl/ko,  L3 = k,/ko. (3.26) 

If all lengths in this equation are assumed to be non-dimensionalized by the thickness 
6 of the shear layer then k, will appear only in the combination k, 6 ,  which we suppose 
to be large, while El and k3 are assumed to be of order unity. We now proceed in the 
usual way and reduce this equation to normal form by introducing the new dependent 
variable 

n =  P / D  (3.27) 
to obtain 

n ” + ( k ; q + s ) I T  = 0, (3.28) 
where 

(3.29) 
and 

q = 02-kJz21-ki. (3.30) 

The turning points of this equation (i.e. the points where q = 0 )  are located where 

s = ( D r r / D )  - 2 ( D ’ / D ) 2  
- -  

M ( y )  = 5 [l + ( E 3 / E , ) 2 ] a  + Lr’. (3.31) 

We shall suppose that the flow is subsonic and that the velocity profile is monotonic. 
Then since we are assuming that M ( y )  > 0, there will be a t  most one turning point,, 
which will occur where 

M(y) = - [ 1 + (k3/k1)2]4 + h ~ l  when 0 < El < 1 (3.32) 
and where 

H ( y )  = [l  + ( k , / k , ) 2 ] t  + L;l when k ,  < 0. (3.33) 

It can be seen from the formulae in 3 3.2 that  the terms in the far-field equations 
are all evaluated a t  L3 = k3/ko = COSB and either a t  k ,  = k,/ko = cosBo or a t  
k ,  = l /M(r / ) .  There will be no turning point in the second case and when the observa- 
tion point is in the plane perpendicular to the plate, so that 8 = @r, the turning 
point will be given by (3.32) in the first case. 

When there are no turning points (3.28) possesses the two linearly independent 
asymptotic solutions (Morse & Feshbach 1953, pp. 1092-1 105) 

Hi exp ( _+ ikOIog rn(y)lW/)/rq(y)la as koS+m. (3.34) 

When there is a turning point, say y8,  lying within the shear layer (3.28) possesses the 
two linearly independent asymptotic solutions 

and 

where the H’s denote Hankel functions and 
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Then when y is not in the immediate vicinity of the turning point, k o c  will be large 
and we can replace the Hankelfunctions by their large argument asymptotic expansions 
to obtain (Abramowitz & Stegun 1964, p. 364) 

'+ exp ( ikO s" [!?(y)la dY)  /[!?(Y)l* for Y * Y8, 8+ (3.35) 
g8 

provided that we choose the branch of the square root such that qi = ilq*l when 
q < 0. Then since in both cases 11+ represents an outgoing wave when y -+ + co and 
II- represents an outgoing wave when y+- co we can, in view of (2.28) and (3.27), put 

Pu = DII+, PL = on- 
and 

rr:. n;, VLN - 1 1 

vu mo iP0 co ko 

(3.37) 

(3.38) 

Inserting (3.34)-(3.36) into (3.37) and (3.38) and using the results in (3.5), we find 
that 

K-(k,lk3)/K+(k1lk3) = ([I -&~M(o)]2-~~-&~}fr/2P~C,D(o) (3.39) 

when there is  no turning point or when the turning point lies above the plate, i.e. when 
y8 > 0. The expression for K-/K+ becomes considerably more compliaated when y8 
lies below the plate and the indicated factorization (i.e. the determination of K+ and 
K- )  leads to expressions involving singular integrals that must be evaluated numeric- 
ally. In  any case we shall show that this situation occurs over only a relatively small 
portion of the sound field when the Mach number is not too high and we shall not 
consider it further. 

In  the present case K+ can be found by factorizing (3.39) to obtain 

where we have put M, = M(0) .  Finally inserting this together with (3.34)-(3.38) into 
(3.11) and (3.15), we obtain for the leading edge 
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and for the trailing edge 

where we have put 

(3.42) 

As we did in the low frequency case, we can now use these results together with 
(3.10) to show that the directivity patterns of the mean-square acoustic pressures in 
the plane of the plate (where B = &r and 0, = $4) are given by 

&(y) = {[ 1 - M ( y )  cos 00]2 - COS’ 80 - COS’ 0}4, 
~ * ( ~ ~ ~ e )  = { + 1 ~ , + [ i - ( i - ~ ~ ) c O s 2 e ] ~ } / ( i  & M ~ ) .  

sin$ [ l + ( l - M o ) c o s $  ] for a leading edge with 
[I - M(yJ  cos $12 I 1 - (1 +Ha) cos $ 1  

$4 > cos-1(1+ Mmax)-l, (3.43) 

sin $4 
[ I  - M(y,.) cos $41’ [ I  - M o  cos $412 

for a trailing edge with q5 > cos-l(l +.LW,~~)-~, (3.44) 

where MmaX is the maximum Mach number in the shear layer. 
These formulae must be multiplied by the exponential damping factor 

exp ( - 2k0 /o” { C O S ~  4 - [ 1 - M(y) cos 41214 dy) 

when 0 < $4 < cos-l[( 1 -t JfO)-l]. They are invalid in the range 

cos-1[( 1 + M,)-l] < $4 < cos-l[( 1 + Mmax)-l], 

since the turning points will then lie below the plate and the present solution will not 

Thus the boundary of the zone of silence occurs a t  $4 = cos-l(l +M0)-l .  The 
turning point is then a t  the position of the plate. As $4 increases the turning point 
moves below the plate and the solution becomes invalid. In  this region the sound 
generated by the plate can be reflected by the shear layer, causing complicated 
interference effects. Finally, no turning points will occur in the range 

apply. 

cos-1(1 +Mmax)-l < $4 < 7r. 
Equations (3.43) and (3.44) again respectively reduce to the cos2 &$4 and cos2 $(n - $4) 

directivity patterns implied by the Ffowcs Williams & Hall result when the mean-flow 
Mach number goes to zero. These results are compared with each other and with the 
Ffowcs Williams & Hall result (oriented relative to the leading-edge configuration) 
in figure 7, where for purposes of illustration we have put M(y,) = Mo = M,,,. In 
evaluating the refraction integral, which appears in the zone of silence, we use the 
mean velocity field described in the next section. The leading-edge directivity patterns 
are seen to be fairly close to the Ffowcs Williams & Hall (1970) result even a t  relatively 
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FIGURE 7 .  Comparison of leading- and trailing-edge radiation patterns in high frequency limit. 
-, leading edge; ---, trailing edge; - - - , Ffowos Williams & Hall (oriented relative to 
leading-edge configuration). 

large Mach numbers. Thus, as one might expect, the mean flow 'shields' the gust 
from the stationary fluid at  infinity and thereby eliminates the convective amplifica- 
tion due to the relative motion of the incident disturbance and the stationary fluid. 
But the mean flow alters the trailing-edge radiation patterns in a very remarkable 
way. It causes these patterns to approach that of a leading edge with the same mean- 
flow direction rather than being the mirror image (about # = in) of that pattern as 
the Ffowcs Williams & Hall (1970) theory would predict. When the Mach number 
approaches zero the trailing-edge radiation pattern approaches the expected sin2 $# 
pattern, which is the mirror image of the cos2 &5 pattern shown in the figure. 

3.5. Behaviour of solutions at the edges 

The Wiener-Hopf solutions to the scattering problems are not unique. However, they 
can be made unique by specifying their behaviour at the (leading or trailing) edges. 
In carrying out the analysis we have always sought the solutions with the weakest 
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FIGURE 8. Configuration of plate experiment. Nozzle diameter 
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FIGURE 9. Shape of one-third octave radiation patterns for 77' = 700ft/s. 
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Angle from nozzle inlet, 180"-@ 

FIGURE 10. Shape of one-third octave radiation patterns for 
UJ- = 500 ft/s. Notation as in figure 9. 

singularities at  these points. However, it is rather difficult to prove that this will 
ensure that the trailing-edge solution will always satisfy a Kutta condition. But the 
results of appendix C show that this does occur for both the high and the low frequency 
solution. In  fact it is shown in both these cases that, as usually happens when there 
is a mean flow, the pressure jump across the plate goes to zero like xt as XJ 0. 

The results of this appendix also show that pressure fluctuations produced at an 
upstream edge exhibit the expected x-4 singularity a t  that edge when k,6 1. But 
the singularity disappears when k, 6 --f 0 and the pressure jump goes to zero like xt 
as z+O. 

3.6. Comparison with experiment 

In  order to verify the directivity patterns deduced in the preceding sections these 
results are compared with the one-third octave sound pressure levels produced by a 
large flat plate in a turbulent jet, which were measured by Olsen (1976). The plate 
was positioned parallel to the jet axis with its leading edge centred in the mixing 
region 4 diameters downstream of the nozzles as shown in figure 8. The relevant 
geometric parameters are indicated on the figure. 
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I I I I I I 
30° 60" 90' 120" 150" 180" 

Angle from nozzle inlet. 180" -# 
FIGURE 1 1 .  Shape of one-third octave radiation patterns for 

lJ2 = 300 ft/s. Notation as in figure 9. 

As in the case where the mean flow is uniform, the scattering of the turbulence will 
be completed in a relatively short streamwise distance. \Ve therefore suppose that 
the incident turbulence can be represented by the gust solution of the previous section. 
We shall not consider the possible effect of any instability wave solutions that may 
appear in the representation of the incident turbulence, primarily because we feel that 
they are irrelevant to turbulent scattering problems. Since the most intense turbulence 
is a t  the centre of the mixing region, where the plate is located, we set yc equal to the 
plate position y = 0. Then the mean flow velocity a t  this position is approximately 0.615 
times the jet velocity U,. 

The mean velocity profiles must be specified in the region between the plate and 
the observer in order to calculate the refraction integrals that  multiply the high 
frequency solutions in the zone of silence. It was shown by Townsend (1956, p. 176) 
that the velocity profiles in this outer portion of the mixing layer can be fitted quite 
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well by U(y)/U’ = $[l-tanh(ay-b)]. We chose the constants a and b to make 
U(0)  = 0.615UJ and (Davies, Fisher & Barratt 1963) 

where, as indicated in figure 8, xp is the distance between the edge of the plate and 
the nozzle and D is the diameter of the nozzle. 

The one-third octave radiation patterns in the plane perpendicular to the plate are 
compared with the theoretical predictions in figures 9-1 1.  The levels of the theoretical 
curves are adjusted to go through the data a t  approximately 90’. Results are presented 
for three different jet velocities and six frequencies. Each figure contains three curves 
in the low frequency range and three in the high. 

The minimum value of the frequency is limited by the requirement that the plate 
be long compared with the wavelength (since it is assumed in the analysis that the 
plate is semi-infinite). At the lowest frequency shown the 8 ft plate used in the experi- 
ment is approximately three wavelengths long. The upper limit of the low frequency 
range is dictated by the requirement that the wavelength be large compared with 
the jet diameter, or at least the thickness of jet through which the sound must pass. 

The inverse requirement sets the lower limit of the high frequency range. The 
highest frequency used was the maximum value consistent with the requirement that 
the acoustic levels be well above the background jet noise in the frequency band under 
consideration. 

The agreement between theory and experiment is seen to be quite good in the low 
frequency range especially at  the highest two velocities, where the data exhibit much 
less scatter than they do at  91-5 m/s. Also shown (on figure 9) is the cosz$q5 directivity 
pattern found by Ffowcs Williams & Hall (1970) for a leading edge in free space. It 
can be seen that the effects of the Doppler factors are substantial even at the relatively 
low velocities of the present experiments. 

In the high frequency range the agreement is fairly good a t  the lowest two frequencies 
but not at  the highest. This is probably due to the turbulent scattering and related 
effects that must occur when the wavelength of the sound becomes comparable to the 
turbulent eddy size. It could also reflect the fact that the wavelength is no longer 
small compared with the plate thickness. 

In each figure the shaded region corresponds to the range of angles where the high 
frequency solutions are invalid. The zone of silence lies to the right of this region. 
At the highest jet velocity of 213 m/s there are two sets of data points within the zone 
of silence. The leftmost of these lie fairly close to the theoretical curves but those on 
the right are substantially higher. This is probably again due to turbulent scattering. 
The free-space theory of Ffowcs Williams & Hall is also plotted. It can be seen that 
it is fairly close to the high frequency theory a t  all points outside the zone of silence. 

4. Concluding remarks 
It is shown that the pressure and velocity fluctuations of the unsteady motion on a 

transversely sheared mean flow can be calculated by differentiation from a certain 
potential which satisfies an inhomogeneous wave equation. This representation 
explicitly exhibits two convected quantities which are associated with the upstream 
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vorticity field and are shown t o  ‘ drive ’ the gust-like or ‘hydrodynamic ’ motion on the 
sheared mean flow. It is used to study the interaction of an unsteady shear flow with 
a semi-infinite plate. The acoustic field produced by this interaction is calculated in 
the low and high frequency limits and the results are compared with experimental 
one-third octave directivity patterns. The agreement is fairly good a t  high frequencies 
and remarkably good at low frequencies. 

The author would like to thank Dr Theodore Fessler for carrying out the numerical 
computations and Dr W. A. Olsen for supplying additional experimental data that 
did not appear in his published report. Thanks are also due to  Dr Olsen for helpful 
discussions about the measurements. 

Appendix A 
I n  this appendix we show that the results of this paper agree with those of I when 

the motion is two-dimensional. The difference between equation (2.38) of this paper 
and equation (3.27) of I is primarily due to the fact that  we chose to express the results 
in terms of different linearly independent homogeneous solutions to the governing 
ordinary differential equations. Thus the & co outgoing-wave solutions of this paper, 
Pu and PL respectively, are related to  the outgoing-wave solution Po of I by 

.+(a) Pu(k1, Y )  for Y > 0, 

PL(kl,Y) for Y < 0, 
P,b,Y) = { 

where the a+(a) are constants. 

related to ug in the same way as P is related to p g  and V is related to  vg) we can write 
I n  fact if we let U be the amplitude of the axial gust velocity ug (i.e. if we let U be 

where 2, is defined by equation (3.9) of I and 2, and 2, are similarly defined by 

2, = (PA,%, U,} for h = U ,  L. (A 2) 

Then since 2, and Z, of I are linearly independent (i.e. since Pl and Po are linearly 
independent etc.), there must exist constants b*(a) and c,(a) such that 

and 
ZL(k1,Y) = b+(a) Z&, Y )  +c+(a) &(a, Y )  for Y > 0 (A 3) 

ZU(k1, Y) = b-(a) Z,(a, Y) + c-(a) Z,(a, 2 )  for y < 0. (A 4) 

These formulae relate the solutions employed in this paper to those used in I .  But 
since 2, and 2, represent continuous solutions in this paper while the solutions 2, 
and 2, of I are in general discontinuous across y = 0 we must have 

ail P,(a, 0 & ) = b, P,(a, 0 T ) +ci Pl(a, 0 T ) 

aIIV,(a,Ok)  = b ,%(a ,OT)+c ,K(a ,OT) ,  
and 

which can be solved for a, and b, to obtain 

b, = - r; c+, = r; ci, 

where the r’s are defined in equation (3.16) of I .  



Then, using equations (3.4) and (3.5) of I together with the fact that Po is a linear 
combination of Pl and P2 etc., we find that 

Finally inserting (A 1)-(A 6) into (2.38), we obtain the second component (i.e. the 
vg component) of equation (3.27) of I. This same procedure can of course be used to 
obtain the other components of the latter equation. 

Appendix B 

of the fluctuating vorticity w = V x u are given by 
In this appendix we is related to the physical flow variables. The 5 and x components 

i a  a 
hg a7 

w = -  1- (hw) -x (9v)j . 
av i au 

q = ax-; q, 
Inserting (2.9) and using (2.10), (2.13) and (2.14) to eliminate the highest derivatives 
of q5 with respect to x and t ,  we get 

and 

Eliminating Dq5/Dt between these equations gives 

where we have put 
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Appendix C 
It follows from (3.4)-(3.6) that the pressure jump A p  across a plate that  extends to 

For a trailing edge the pressure jump across the plate is still given by (C 1) 

for k,S < 1 (C 4) 

where A, = (ki - kg)j. Since the integrands of (C 4)  and (C 5) respectively behave like 
k;g and k? as k, -+ 00, it follows from the theory of Fourier transforms that 

91e(x17,k3)  - x8, 2' te (x17 ,k3)  N xt as X + O  for k06< I .  

Similarly we find upon inserting (3.39) together with the equation for K +  into (C 2 )  
and (C 3) that  

~ L ~ ( X I ~ , I C ~ )  N x-t, 9 ' t e ( ~ I ? 7 , k 3 )  - X* as x+O for koS 9 1.  
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